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Abstract 

We study the implementability of Black’s (1988) elegant discounting rule.  The 

rule overcomes thorny problems that traditional valuation approaches struggle 

with, namely identifying the market portfolio, measuring project risk, and 

assessing the market risk premium.  We offer new theory, showing that the 

conditional mean cash flow called for in Black's rule equals a given percentile of 

the cash flow distribution.  Moreover, we present evidence that the probability 

level of the percentile in question is reasonably stationary in time and across 

countries, and that managers typically have the information our implementation 

requires.  Computing project and firm value with the approach we are proposing 

is a feasible and theoretically sound alternative to other valuation methods. 
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Project value is usually computed by discounting the project’s mean net cash flows 

(NCF) with an appropriate cost of capital.  The capital asset pricing model (CAPM) is typically 

used to measure that cost (in Graham and Harvey’s (2001) survey, 74% of managers claim to 

always or most always use the CAPM).  Some of the problems in doing so include identifying 

the market portfolio, measuring risk, and computing market risk premiums.  Black (1988) has 

proposed a valuation rule that avoids those problems and can be used under all circumstances in 

which one can use the CAPM (or the APT).  The rule is also relevant in cases in which the 

CAPM (or the APT) does not necessarily hold.  More details are in Long (2000).  Discussions 

are in, among others, Brennan (1995), Myers (1996), and Laitenberger and Löffler (2002).   

The rule is elegant and simple, but it requires knowledge of the project’s future 

conditional mean net cash flows—conditional on the relevant benchmark return being equal to 

the risk-free rate.  These conditional mean NCFs are then discounted at the risk-free rate.1  

Estimating conditional mean NCFs is not straightforward, which has probably dissuaded 

textbooks from recommending the rule and discouraged practitioners from adopting it—in spite 

of the fact that estimating unconditional mean NCFs, as required under the traditional valuation 

approaches, is in many ways an equally daunting task.  The rule, however, moves the focus of 

the analyst away from the assessment of discount factors and puts it squarely on the more 

challenging, and arguably more relevant problem of gauging the project’s relevant cash flows.  

The paper discusses the estimation of conditional mean NCFs called for in Black's rule.   

We offer new theory, showing that the conditional mean NCFs equal particular 

percentiles of the net cash flow distributions.    Moreover, we show how the probability levels of 

                                                 
1 Thus, Black’s rule says that the correct ―certainty equivalent‖ of the cash flow is its conditional mean—which can 

be estimated without first estimating cash flow risk measures or the market risk premium.  Other ―certainty 

equivalent‖ style discounting rules (e.g., Sick (1986)) do require estimating cash flow risk measures and the market 

risk premium. 
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the relevant percentiles are related to the distribution of excess returns on benchmark securities, 

that empirically the probability level of the relevant percentiles are fairly stationary in time and 

across countries, and that managers typically have the cash flow distribution information 

required by the implementation of the rule.   

The implementation we propose consists of four steps: (i) finding a benchmark security 

or index that closely correlates with the project’s NCFs with an independent error term with zero 

mean; (ii) estimating the probabilities of nonpositive excess benchmark returns over periods 

between now and project cash flows; (iii) obtaining information from managers to assess the 

corresponding percentiles in the cash flow distribution (the so-called conditional mean cash 

flows); and (iv) discounting those cash flows at the risk-free rate.     

Black’s rule cannot always be applied as we suggest.  We need a benchmark security and 

we have to assume that managers are able to ignore idiosyncratic risk in their cash flow 

forecasts.  Even though traditional valuation methods also face these two problems, our valuation 

approach is not always better, simpler, or more precise than traditional valuation methods.  Still, 

it is a viable and theoretically correct alternative to them and therefore a useful addition to the 

toolbox of valuation.        

The rest of the paper is structured as follows.  Section I derives and discusses Black’s 

rule.  Section II shows how to estimate the conditional net cash flows called for by Black’s rule.  

Section III reviews theoretical issues and assumptions, and presents evidence indicating that one 

needs not look farther than the S&P 500 index to find a benchmark index appropriate for a 

significant number of firms.  We also show survey data to argue that many managers have the 

information required by the implementation of Black’s rule we are recommending.  Section IV 

examines the empirical properties of the probabilities of nonpositive benchmark excess returns.   
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We discuss different ways to estimate those probabilities with historical data, show how those 

estimates depend on the investment horizon, and conduct international comparisons for a large 

set of countries.  The last section draws conclusions. 

I.  Black’s Discounting Rule 

If we want to evaluate an investment project with a traditional discounted-cash flow 

(DCF) approach, we have to solve the following problems: (i) forecasting the project’s future net 

cash flows, assessing their probabilities, and calculating their mean values; (ii) identifying the 

market portfolio of risky assets; (iii) measuring the market risk premium; (iv) finding the 

project’s beta (assuming risk stays the same over the life of the project); (v) estimating the 

project’s risk-adjusted discount rate (if the term structure of interest rates is not flat and the 

project extends over a number of years, we may need more than one discount rate); and (vi) 

discounting the forecasted net cash flows with the appropriate risk-adjusted discount rate(s).  

Some of these problems are not easy to solve and require substantial guesswork or 

restrictive assumptions.  This is especially the case when it comes to assessing the appropriate 

risk-adjusted discount rate(s)—an almost desperate task, according to Fama and French (1997).  

To get around these problems, Black (1988) proposes an elegant, alternative valuation procedure.  

What follows provides an intuition for that procedure.  

Suppose, for simplicity, that our investment project generates only one net cash flow 

(NCF) at the end of the year (or at the end of a number of years).  Also, suppose there is a 

security whose return is correlated with that cash flow.  Consistent with CAPM assumptions, the 

security in question could be the market portfolio, but it could also be an industry portfolio or 

some other security―conceivably, even the firm’s own stock.  We call this security benchmark 

security, and the associated return the benchmark return.  The NCF can be written as: 
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MNCF R     , (1) 

 

where the tilde indicates a random variable, 
MR  is the arithmetic rate of return (the wealth-

relative minus one) on the benchmark portfolio during the year,  is a constant,  is the project’s 

cash-flow beta, and  is independent idiosyncratic noise with zero mean.2  The index therefore 

captures the cash flow's systematic risk.  The error term measures the project’s firm-specific or 

idiosyncratic risk, i.e., possible disturbances in the net cash flow that are unrelated to market-

wide events.       

Equation (1) tells us that the project’s NCF is linearly related to the return on the 

benchmark portfolio of risky assets.  That is, if the project’s beta is positive and we ignore the 

error term, higher benchmark returns lead to higher net cash flows.  Moreover, projects with 

higher cash flow betas react more strongly to the ups and downs in benchmark returns—they are 

riskier.   

To compute the value of the random NCF in equation (1), it helps to first rearrange 

equation (1) by writing: 

 
M F FNCF (R R ) R       , (2) 

 

where RF is the risk-free rate.  Given that we have an unrestricted intercept term, we can rewrite 

equation (2) with two different beta coefficients.  Since it is more general, we focus on that 

version of equation (1), namely: 

 

                                                 
2 If, for example,  = 1,000,000, then, on average, an increase of 100 basis points in MR  results in an increase in 

NCF of 1,000,000×0.01 = 10,000.  The relation between traditional return beta, R , and the cash flow’s risk-

adjusted discount rate, k, is: 
 
 R

E NCF

1 k
   




. 
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 *

1 M F 2 FNCF (R R ) R          , (3) 

 

The net cash flow is the sum of two random [
1 M F(R R )   and  ] and two non-random [


 

and 2 FR  ] amounts of money.  Its value is therefore the sum of the values of those four terms.  

Since the two non-random quantities are known, we find their value by discounting them at the 

risk-free rate, namely by calculating 

 

 
*

F1 R




 and 2 F

F

R

1 R

 


, respectively.   

 

As for the value of the two random amounts of money, it is zero.  To show that, we argue as 

follows.  Recognize first that   represents pure idiosyncratic risk in the sense that it is 

independent of 
MR  and any other market ―risk factor‖ by assumption.  It is therefore fully 

diversifiable and, since its expected value is zero, its present value is zero as well.   

The present value of the random amount 1 M F(R R )    is zero, too.  The reason is that 

you can costlessly construct a replicating portfolio that yields that payoff.  To see that, write out 

this expression as 1 M 1 FR R    , and realize that you can replicate that amount of money by 

simply borrowing the sum at the risk-free rate and investing it in the benchmark portfolio.3  In 

principle, since you have not invested any of your own funds, you should not expect to make any 

money with this strategy—otherwise, you would have found a money machine.  Consequently, 

the value of the project’s NCF equals: 

 

                                                 
3 In reality, the bank will ask for security to cover your liability in case the benchmark return is smaller than the 

risk-free rate. 
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 Current value of 
**

2 F 2 F

F F F

R R
NCF

1 R 1 R 1 R

    
  

  
 . (4) 

 

The quantity *

2 FR    in this expression equals the mean net cash flow when the 

benchmark return equals the risk-free rate—i.e., it equals the mean NCF conditional on that 

event: 

 

 * *

M F 1 M F 2 F M F 2 FE NCF R R E (R R ) R R R R                
   

    , (5) 

 

where we use the assumption that the error term,  , has zero mean and is independent of the 

benchmark return.  The expression 
M FE NCF R R 

 
   is the conditional expectation of the net 

cash flow—
1 ME(NCF) E(R )     would be its unconditional expectation.  Combining 

equations (4) and (5), we can express the present value of the project’s net cash flow as: 

 

 Current value of 
*

M F
1 F

F F

E NCF R RR
NCF

1 R 1 R

      
 

 
 . (6) 

 

Equation (6) tells us that, to find the current value of a risky net cash flow, all we have to 

do is discount its conditional expected value at the risk-free rate.  That means, we have to 

measure what the NCF would be on average in the event that the benchmark return equals the 

risk-free rate, and discount that number at the risk-free rate.  ―On average‖ means that we ignore 

the random term ~ .  This is Black’s discounting rule.  The benchmark return can follow almost 

any distribution.  We require, however, that the project cash flow and the benchmark return be 

linearly related as in equation (1), that benchmark return and random term be independent, and 
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that the random term have zero mean.  The same conditions have to hold under the CAPM.  The 

conditional mean NCF is the certainty equivalent of the NCF in question.4   

Equation (6) applies also in the case in which projects extend over more than one period.  

If so, we compute project value by valuing its conditional mean net cash flows separately 

according to equation (6).  The assumption we make is that NCFs and benchmark returns are 

linearly related as in equation (1).  If project risk gets resolved progressively over time, the 

benchmark returns are multiperiod benchmark returns computed over the same time horizon as 

the NCFs in question.  However, other patterns of uncertainty resolution are conceivable.  For 

example, suppose the time to a particular project cash flow is N+M months and that none of the 

current uncertainty about the cash flow is resolved in the first N months.  In that case, the 

appropriate return in equation (1) is the long-period return to a strategy of investing $1 initially 

in an N-month riskless pure discount bond and then, after N months, investing the proceeds of 

the bond investment for the remaining M months of the cash flow period in the benchmark 

security.  In the extreme, none of the uncertainty about the cash flow may be resolved until the 

last month.  Examples of this kind of cash flow are monthly profits from an enterprise with a 

monthly operating cycle where each month's profit is nearly independent of previous months’ 

profits.      

Black’s discounting rule looks simpler to use than the traditional DCF rule.  If we know 

the conditional mean NCFs, we can ignore the market risk premium and we don’t need to know 

the project’s beta and how it varies over the project’s life.  As we said, we don’t even have to tell 

what the market portfolio is, since the rule applies also in the case of other benchmark portfolios 

                                                 
4 Under the CAPM, finding the certainty equivalent of a NCF requires information about the market price of risk 

and the project’s beta—and hence the same information used in the standard CAPM expression of NCF value (see, 

for example, Brealey, Myers, and Allen, 2006, p. 226).    
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or securities (provided the error term in equation (1) has zero mean and is pure idiosyncratic 

risk).  These seem to be considerable simplifications.  Moreover, the rule holds in all situations 

in which the traditional valuation models such as the CAPM and the APT hold.  The simple 

discounting rule does not work, however, when the NCFs are a non-linear function of the 

benchmark returns—but neither do the traditional valuation models.5  

II.  Estimating Conditional NCFs  

The problem in applying Black’s rule is the estimation of conditional mean NCFs.  As we 

said, these cash flows are those we observe on average when the return on the benchmark 

portfolio equals the risk-free rate.  Yet it is not clear how we can easily obtain meaningful 

estimates of those cash flows.  One possible solution is to ask managers to tell us what the future 

net cash flows will be if the benchmark return equals the risk-free rate, on average.  

Unfortunately, this approach does not seem to be very promising because it is unlikely that 

managers are consciously aware of that relation.   

Myers (1996, p. 99) proposes a two step-forecast.  ―First, construct scenarios for the 

business variables corresponding to the macroeconomic conditions implied by a benchmark 

return equal to the risk-free rate. Then, ask the manager to forecast cash flow for these scenarios.  

If everything is done consistently, the result should be the conditional forecast Fischer calls for.‖  

The problem is translating benchmark returns into macroeconomic conditions.  What follows 

proposes an alternative indirect way to elicit the information we want from managers. 

[Figure 1 about here] 

                                                 
5 Options, for instance, are non-linear functions of the benchmark return, since they have positive payoffs above the 

exercise price and zero payoffs below it.  See the discussion in Black (1988), p. 9–10, and Long (2000), p. 10–11. 
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Figure 1 illustrates what we are after.  The histogram on the left shows benchmark returns 

as we would observe them if we used the CRSP Value Weighted Index as a proxy and they were 

generated under a normal distribution with the historical parameters estimated for the years 

1926–2005 in the U.S.—namely a mean of 9.54% and a standard deviation of 19.51%.  In grey, 

we show the frequency of observations smaller than or equal to an assumed risk-free rate of 

3.63% (the historical average annual return on 30-day T-bills).6  The diagram on the right-hand 

side of the figure uses these benchmark returns and equation (1) to generate the net cash flows 

we would expect on a project with an assumed   of 100 and a cash flow beta of 800 (unlike 

return betas, cash flow betas have values that depend on project size: larger projects tend to have 

larger cash flow betas).  The computation ignores the idiosyncratic risk component—i.e., the   

term in equation (1).  The grey area in the histogram on the right-hand side of the figure is 

defined by the interval of net cash flows produced by benchmark returns smaller than or equal to 

the risk-free rate.  The conditional mean net cash flow forecast we are interested in is the upper 

limit of that interval.  

A possible heuristic procedure to generate these conditional forecasts is therefore to find 

the percentile of the distribution the benchmark return defines when it equals the risk-free rate—

we are looking for the cumulative density at that point.  Because of the monotone increasing 

relation between net cash flows and benchmark returns, the associated net cash flow will define 

the same percentile in its own distribution (in other words, the grey areas in the two diagrams of 

Figure 1 are equal).  For example, if the benchmark return equals the risk-free rate at the 20
th

 

percentile of its distribution, then the implied net cash flow will also correspond to the 20
th

 

percentile of its respective distribution.  And once we know the percentile of the net cash flow 

                                                 
6 Returns are continuously compounded. 
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distribution we are interested in, we can use managers’ cash flow information to identify the 

NCF that defines that 20
th

 percentile.  That’s the conditional mean NCF we are looking for.  Let 

us refer to that percentile as the risk-free percentile.7  We are not making any distributional 

assumptions.  The central idea of our implementation approach is that, if idiosyncratic cash flow 

risk is ignored, the conditional mean cash flow is equal to the cash flow at the risk-free percentile 

of the cash flow distribution—regardless of return distribution.     

We are assuming that the project’s cash flow beta is positive.  If that beta is negative, 

meaning that higher benchmark returns induce more negative cash flows, the appropriate 

conditional mean forecast is the cash flow at the percentile equal to one minus the risk-free 

percentile. 

Another assumption we are making is that, in providing NCF information, managers are 

intuitively able to abstract from the impact that firm-specific events can have on the cash flows 

of their projects.   In other words, we assume that, in forecasting the possible future project 

NCFs, they are able to focus on the economy-wide (or industry-wide, if we use an industry index 

as a benchmark) causes of variation in those cash flows, such as the overall state of the economy, 

and ignore accidental firm-specific events.  We come back to this assumption further down.     

Conceivably, in trying to assess conditional mean NCFs, it might be easier for managers 

to break the total NCF for a period into its individual ―line-item‖ components (revenue and 

expense items).  The conditional mean of the total NCF is the sum of the conditional means of 

those line-item components.  Thus, the risk-free percentile method of estimating conditional 

means can be applied to each line item component separately.  The manager could gauge the 

                                                 
7 The risk-free percentile in the preceding example is 0.20, i.e., we are using the term "risk-free percentile" to refer 

to the probability of a nonpositive excess benchmark return.  We refer to the cash flow at the risk-free percentile of 

the cash flow distribution as the ―conditional cash flow.‖ 
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itemized conditional mean cash inflows and outflows separately, and then discount those 

estimates at the risk-free interest rate.  This approach could be easier (item by item) and more 

accurate.  In particular, (i) it may be easier to distinguish systematic and idiosyncratic sources of 

variation at the line-item level, and (ii) it may be simpler to estimate the systematic volatility of 

individual line-item components than the overall systematic volatility (under the normal, as 

illustrated below, you often need volatility information to estimate conditional mean NCFs).  For 

simplicity, we will ignore this possibility in the following discussion.   

Our implementation of Black’s rule involves the following four steps: (i) Finding a 

benchmark index or stock that correlates with the project’s cash flows with a pure idiosyncratic 

error; (ii) estimating the percentiles of the distribution for which the stock return in question 

equals the risk-free rate; (iii) obtaining information from managers to assess the cash flows that 

define the same percentiles in the cash flow distribution (i.e., the conditional mean cash flows); 

and (iv) discounting those conditional mean cash flows at the risk-free rates for the same 

maturities.   

In what follows, we use the CRSP Value Weighted Index as a proxy for the benchmark.  

Remember, however, that whereas in the implementation of the CAPM we have to look for 

market portfolio proxies, we do not have to do so here.  Still, the quest for an appropriate 

benchmark security is nontrivial.  The next three sections describe steps (ii) to (iv) in the 

implementation of Black’s rule.  
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A.  Estimating the Risk-free Percentiles  

The following table reports the historical distribution characteristics of the continuously 

compounded annual stock return on the CRSP Value Weighted Index.8  As commonly done in 

the literature, we assume for the moment that this return is normally distributed, even though, as 

mentioned above, Black’s rule (and our implementation) applies also under alternative 

distributions.  In the period of 1942–2005, the average return was 11.39% and the standard 

deviation was 15.58%.  The table also shows the annual (continuously compounded) yields-to-

maturity on Treasury securities with maturities between 1 and 5 years during the same time 

period.9  We use those yields as proxies for both the historical and the current risk-free rate.     

 
 CRSP Value 

Weighted Index 

Treasury yields 

 1942–2005 1 year 2 years 3 years 4 years 5 years 

Average 11.39% 5.13% 5.24% 5.32% 5.39% 5.47% 

Standard deviation 15.58%      

 

Suppose we have an investment project whose net cash flows are linearly related to the 

benchmark return as in equation (1).  Assuming the distribution of benchmark returns is expected 

to remain the same over time, we can use the numbers in the table to assess our risk-free 

percentiles.  Since investment projects can last several years, we assume that equation (1) holds 

with benchmark returns measured over a different number of years, corresponding to the time 

horizon of the project’s NCFs.  Consequently, the net cash flow two years ahead will be related 

to the benchmark return over the next two years, the net cash flow three years ahead to the 

                                                 
8 The empirical analysis uses continuously compounded returns.  One can always express arithmetic returns as 

equivalent continuously compounded returns.  This expedient makes it is easier to estimate multiperiod mean returns 

and return variances, assuming zero autocorrelation, in our subsequent calculations—over T periods, the mean 

return equals the one-period mean multiplied by T, and the return variance equals the one-period variance multiplied 

by T.  See Fama (1996) for a similar analysis.       
9 Since we don’t have Treasury yields for 3- and 4-year maturities, we compute them as linear interpolations of the 

available 2- and 5-year yields.  
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benchmark return over the next three years, etc.  As pointed out above, this assumes that NCF 

uncertainty gets resolved progressively over time.  Other resolution patterns are conceivable and 

consistent with equation (1).   

The table below uses the historical data to calculate the benchmark return’s average and 

standard deviation as well as the relevant risk-free rate for time horizons of one to five years.  

For example, the average benchmark return over a three-year horizon is 34.17%, the benchmark 

return’s standard deviation is 26.99%,10 and the risk-free rate is 15.96%.11  These values imply 

that the percentile of the distribution for which the benchmark return equals the risk-free rate 

over a three-year horizon is 24.99%.12  The table shows that the risk-free percentile falls from 

34.39% for a time horizon of one year to 19.78% for a horizon of five.  The reason for the 

decline is that the mean return increases faster with the investment horizon than the return 

dispersion does—the mean return increases linearly with T whereas the standard deviation of the 

return increases with the square root of T. 

 

Year of 

NCF 

Cumulative average 

RM 

Standard deviation of 

RM 

Cumulative risk-free 

rate 

Percentile for which RM 

equals or is smaller than the 

risk-free rate 

1 11.39% 15.58% 5.13% 34.39% 

2 22.78% 22.03% 10.48% 28.83% 

3 34.17% 26.99% 15.96% 24.99% 

4 45.56% 31.16% 21.56% 22.06% 

5 56.95% 34.84% 27.35% 19.78% 

                                                 
10 Given continuous compounding, and safe for rounding errors, the cumulative average return equals three times 

the annual average (34.17% = 3×11.39%). The associated standard deviation equals the square root of three times 

the annual standard deviation (26.99% = 3×15.58%).  See Fama (1996) for similar computations and tables. 
11 Given continuous compounding, that average yield equals three times the annualized three-year yield, namely 

15.96% (= 3×5.32%). 
12 That percentile is computed by first setting the cumulative three-year stock return equal to the cumulative three-

year risk-free rate and then standardizing the result with the cumulative average three-year stock return and its 

standard deviation. The standard normal variable in question equals (15.96–34.17)/26.99 = –0.6748 and the 

associated normal distribution is 24.99%. 
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B.  Estimating the Distribution of Future Net Cash Flows  

The second step is estimating the distribution of future net cash flows.13  For logical 

convenience, given the discussion in the preceding section, we assume a Gaussian distribution.  

Most managers do not know the distribution of future NCFs in much detail.  They know aspects 

of it, however.  And, under normality, all we need is two points on that distribution.14  For 

example, they might have an idea about the mean of that distribution and an estimate of the 

probability that the cash flows will fall under a certain value.15  Alternatively, they might be able 

to state mean values for various scenarios, such as a pessimistic and an optimistic one (actually, 

these are truncated means of the overall net-cash-flow distribution).  And at the same time, they 

might have a rough idea of the probability with which the cash flows will fall under the average 

value under the pessimistic scenario, or exceed the average value under the optimistic one.  We 

can use that information to pinpoint the full distribution of the future cash flows of an investment 

project.     

C.  Estimating the Conditional Mean Cash Flows  

The third step involves quantifying the conditional mean cash flows of our project.  

Given the information gathered in the two preceding sections, we can do so fairly easily.   

                                                 
13 This section relies on input by a team of students (Heinz Brägger, Thomas Himmel, Roman Käser, Andreas 

Nauer, and Jürg Rippl) in the Rochester-Bern Executive M.B.A. Program who implemented Black’s rule for an 

actual investment project.   
14 In fact, the same applies under any two-parameter distribution with real-line support.  
15 Similar information is needed in other contexts to state value-at-risk or cash-flow-at-risk measures. 
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D.  Discounting the Conditional Mean Cash Flows at the Risk-free Rate 

Computing the value of conditional mean cash flows simply requires discounting them at 

the corresponding risk-free rates.  Appendix A illustrates our valuation approach with an 

example.    

III.  Feasibility Issues 

Our approach faces three challenges, namely whether we can find a benchmark security 

with returns closely correlated with a project’s NCFs and an independent error term with zero 

mean; whether managers are able to ignore idiosyncratic sources of NCF volatility; and whether 

managers have the information necessary to estimate the distribution of future NCFs.  Let’s 

begin with the first question.        

A.  Coefficients of Determination of Equation (3)  

The question is whether we can find a benchmark security that correlates closely with the 

project’s cash flows, as postulated by equation (3).  What we are interested in is the size of the 

correlation between a cash flow that will be realized at time t (e.g., a year from now) and a 

benchmark asset return that will also be realized at time t.  The relevant joint distribution of the 

cash flow and the asset return is the distribution conditional on information available at time t–1.  

Thus, the relevant correlation is the correlation between the asset return and the cash flow 

forecast error defined as the time t cash flow minus the time t–1 forecast of the cash flow.  To 

measure that correlation, we can treat equation (3) as a regression model. 

If we focus on one-year-ahead cash flows, then the regression to estimate is the 

regression of one-year-ahead forecast errors on a benchmark return realized at the same time as 

the forecast error.  The accounting literature suggests that a good time-series model for quarterly 
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earnings is a seasonal random walk in which the forecast of n-th quarter earnings next year are 

the n-th quarter earnings this year (see, for instance, Bernard and Thomas (1990)).  We therefore 

replace NCFt in regression equation (3) with NCFt – NCFt-4Q, where Q stands for quarter.  For 

two- and three-year investment horizons, the innovation in NCFt is the difference between the 

NCFt in quarter t and the NCFt in the same quarter two respectively three years before (NCFt-8Q 

and NCFt-12Q).   

The S&P 500 is our benchmark index.  The risk-free rate is the return on the constant-

maturity Treasury series obtained from the CRSP Government Bond Files for each particular 

investment horizon.  The sample comprises all Compustat firms, excluding financials.  We 

measure NCFs with quarterly net cash flows from operations as reported in Compustat data item 

#108. 16  To control for possible nonstationarity, we estimate our regressions also by scaling the 

quarterly net cash flows with the total assets reported at the beginning of that given quarter 

(Compustat data item #44).17  We use 5- and, alternatively, 10-year sample estimation periods.  

The 5-year window covers the years 2001 to 2006; the 10-year period includes the years 1997 to 

2006.  Firms are excluded from the 5- (10-) year sample  if they have fewer than 20 (30) 

observations.   

[Table I about here] 

Table I presents the estimation results.  For each individual firm, we run regressions for 

either window.  Moreover, each regression is estimated alternatively with actual and 

                                                 
16 For a robustness check, we also measure NCFs following the approach in Minton and Schrand (1999) as sales 

(Compustat data item #2) less cost of goods sold (item #30), less selling, general, and administrative expenses (item 

#1), less the change in net working capital.  Net working capital is the sum of non-missing amounts for accounts 

receivable (item #37), inventory (item #38), and other current assets (item #39) minus the sum of non-missing 

amounts for accounts payable (item #46), income taxed payable (item #47), and other current liabilities (item #48).  

Our results, however, don’t change significantly.  
17 Our results are unaffected when we scale NCFs with the value of property, plant, and equipment (PP&E) instead 

of the value of total assets. 
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standardized NCFs.  The table reports sample moments of the R-squared distribution yielded by 

each regression specification, namely average, first and third quartile, 90
th

 percentile, and 

maximum value.  The top half of the table displays the results based on the 5-year estimation 

window; the bottom half exhibits them for the 10-year estimation window.  In each half, we 

show our estimates for 1-, 2-, and 3-year returns, respectively. 

Let us focus on the results for the 5-year estimation window first.  The average R-squared 

of the regression is between 0.2 and 0.3.  The strongest correlations are observed for longer 

investment horizons and unstandardized NCFs.  For one-year returns, for example, the average 

R-squared is 0.22; for three-year returns it is 0.29.  The third quartiles of the distributions and, 

especially, their 90
th

 percentiles, yield fairly sizable R-squared values.  In particular, the third 

quartile of the distribution for the regressions with unstandardized NCFs and one-year returns is 

0.32, the 90
th

 percentile is 0.44 (the maximum is 0.81).  These numbers go up further when 

returns are measured over 2 and 3 years.  With three-year returns, the corresponding results are 

0.44 and 0.60, respectively (the maximum is 0.89).  The explanatory power of the model 

generally declines when we use an estimation window of 10 years.  It is possible that the risk 

characteristics of aggregate operating NCFs change over time, which would increase the error 

term in the regressions.     

There are consequently a number of firms for which Black’s rule seems to apply.  If we 

take a look at the 90
th

 percentile of the one-year regressions we just described, there are about 

320 firms (=0.1×3,206) with an R-squared larger than 0.44.  This observation applies to the first-

year NCFs of a hypothetical project.  For the NCFs in years 2 and 3, the panel shows, as we saw, 

even larger R
2
s.  The set-up of our investigation probably makes our quest for large explanatory 

power difficult, since we are considering a large benchmark aggregate and, especially, company-
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wide NCFs.  Aggregate NCFs could represent the consolidation of widely different projects with 

diverse risk characteristics.  Conceivably, breaking down the benchmark returns to industry 

(possibly firm-specific) returns, and focusing on project (as opposed to company-wide) NCFs, 

could yield even tighter fits.18   

B.  Ignoring Idiosyncratic Sources of NCF Variation 

The second serious challenge our implementation faces is the assessment of a project’s 

future unconditional mean cash flows and of the associated standard deviation (or of any two 

statistics of the NCF distribution, under the assumption of normality we are making).  

Combining these two pieces of information, we can assess the distribution of future NCFs and 

identify the conditional mean NCFs we need.  Yet to come up with the information in question, 

managers have to be able to disregard firm-specific events (i.e., the disturbance factor   in 

equations (1) to (3)).  We simply assumed managers have that ability without much explanation.  

It would seem that paying no attention to firm-specific occurrences is quite a natural inclination.  

It would be very difficult for managers to forecast NCFs based on speculations concerning the 

occurrence of fortuitous events such as secretarial mistakes or accidents in the company’s 

plants—an almost unlimited set of possible occurrences.   

There are two arguments that help us make our case more formally.  The first is that 

idiosyncratic events cancel each other out over time.  Hence, managers with long enough 

working experience should have learned to focus on systematic events almost automatically.  

The second argument is that many executives familiar with risk management practices are 

                                                 
18 A potential problem is autoregressive residuals.  To examine its severity, we compute a Breusch-Godfrey test of 

serial correlation of order one.  The average p-value across the 3,206 sample firms is 0.179 for one-year, 0.268 for 2-

year, and 0.295 for 3-year horizons.  Hence, there does not seem to be a problem, on average.  There is also no 

evidence that firms with a better fit have more serially correlated residuals.         
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consciously able to distinguish company-specific events from economy- or industry-wide 

changes, since those two classes of events have different policy implications.  Adverse firm-

specific events can be prevented by establishing appropriate internal guidelines and codes of 

conduct.  In contrast, there is little an importer of Japanese high-tech equipment can do to 

prevent market-wide events such as a hike in the value of the Japanese Yen.  Of course, if 

managers have not learned to disregard the idiosyncratic sources of cash-flow variation, the 

project analyst may be able to help them do so with the proper instructions.             

Our two arguments, however, do not conclusively prove that managers are able to ignore 

specific risk.  We may add, however, that the problem of ignoring firm-specific considerations is 

not limited to our implementation of Black’s rule.  It confronts also the user of the traditional 

DCF methods when assessing unconditional mean cash flows.  As it turns out, not ignoring 

idiosyncratic risk biases the estimates of conditional mean NCFs downward.  The intuition is that 

idiosyncratic risk increases the standard deviation of the NCF distribution and therefore lowers 

the value of the NCF associated with a given percentile of the distribution—consistent, in 

principle, with the notion that higher risk lowers value.  Under normality, the downward bias is 

directly proportional to the inflation of the standard deviation of NCFs caused by the inclusion of 

idiosyncratic risk.19  Moreover, equation (1) implies that the importance of idiosyncratic risk 

falls with the correlation between benchmark return and project NCF.  

C.  What Managers Seem to Know 

Assuming they can ignore idiosyncratic disturbances, the ultimate question is whether 

managers possess the information necessary to assess the distribution of future NCFs.  To find 

                                                 
19 The bias in the conditional mean NCF is measured as a percentage of the true conditional mean NCF.  The 

inflation in the standard deviation is measured as a percentage of the standard deviation of the systematic component 

of the NCF in equation (1).   
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out, we surveyed all the alumni of the Rochester-Bern Executive MBA program.  These 

managers have all been exposed to DCF methods and to basic statistical concepts and 

techniques.  In a questionnaire, we asked those who have been involved in computations of 

(medium/large) project or firm value with a DCF approach the following question: ―We would 

like to know whether [in your past computations] you would have been able to provide any of 

the following information for the years for which you estimated cash flows (this generic term 

refers to net cash flows, free cash flows, or residual cash flows).  Please understand that we are 

simply trying to find out what information, if any, is commonly available—we are by no means 

suggesting that one does or should know the information below.‖  We then gave them the 

following list of characteristics of the hypothetical distribution of future NCFs to choose from: 

 

A-I The average cash flow 

A-II The standard deviation of the cash flow 

B-I A break-even cash flow (i.e., the minimal cash flow necessary to 

make the project worthwhile) 

B-II A rough  probability of observing the break-even cash flow 

C-I The pessimistic cash flow 

C-II A rough probability of observing the pessimistic cash flow 

D-I The optimistic cash flow 

D-II A rough probability of observing the optimistic cash flow 

E A rough probability of observing a zero cash flow 

 

To derive a project’s cash flow distribution under the normality assumption, we require at least 

two points on the hypothetical distribution of project cash flows.  Consequently, we need any 

two of the items: A-I, A-II, B-I & II, C-I & II, D-I & II, and E.      

We sent the questionnaire to 496 managers; 212 (42.7%) filled it out.  Of those, 125 

(59%) were recently involved in valuation—virtually all with a DCF approach.  Table II reports 

the number and percentage of respondents able to quantify individual items in the preceding list 
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in the context of their projects.  About three out of every four respondents could have stated 

average, break-even, or pessimistic cash flows.  Substantially fewer individuals would have been 

capable to provide measures of dispersion or probabilities.  Specifically, about 36% could have 

indicated the probability of observing the pessimistic, the optimistic, or the break-even cash 

flows; twenty-three percent could have quantified a rough probability of observing zero cash 

flows, and 18% had an estimate of the standard deviation of those cash flows. 

[Table II about here] 

Taken together, about half of the managers (63 out of 125) who claim to use a DCF 

valuation approach would have been able to implement Black’s discounting rule along the lines 

we are suggesting.  In fact, this figure is probably downward biased since 54.4% of all 

responding managers would have found it easier to provide information about the statistics A-I to 

C-II for the cash flows’ individual ―line-item‖ components than for the sum of those 

components.   

IV.  Empirical Characteristics of Risk-free Percentiles 

In order to apply Black’s rule, we have to compute risk-free percentiles.  In the 

discussion above, we relied on U.S. data from the years 1942–2005 to do so.  Yet the use of data 

in the comparatively far past makes sense only if the percentiles in question are reasonably 

stationary over time.  This section examines that issue for different sub-periods throughout the 

years of 1926–2005.  Furthermore, we assess the magnitude and behavior of those percentiles 

over different investment horizons, and investigate various estimation approaches.  Finally, we 

ask how risk-free percentiles compare across capital markets—in integrated markets, we would 

expect similar values.   
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A.  Risk-free Percentiles for One-month Investment Horizons: Historical U.S. Estimates 

Data for our computations are from the monthly CRSP files for individual decades in the 

period 1926–2005.  The CRSP Value-Weighted Index is our benchmark security and the 30-day 

T-bill rate is the proxy for the risk-free rate.  For simplicity, we work with excess returns, 

defined as the difference between benchmark returns and contemporaneous risk-free interest 

rates.  The risk-free percentile for an investment horizon of one month is therefore the 

cumulative probability of a monthly excess return equal to or smaller than zero.   

[Table III about here] 

Table III reports distribution characteristics.  The first two columns of the table display 

the mean and the variance of the monthly excess returns in each decade.  The third column 

shows the risk-free percentile in each decade under the normal approximation using the 

estimated mean and variance for the decade in question.  The risk-free percentiles go from 38.7% 

(1946–1955) to 51.9% (1966–1975), although most of the observations are between 42% and 

46%.  For the full 1926–2005 period, the estimate is 46.4%.   

To assess whether these risk-free percentiles are stationary, we use a Wilcoxon rank-sum 

(Mann-Whitney) test and compare the distribution of monthly excess returns in each decade with 

that of the full 1926–2005 period (exclusive of the decade under consideration).  The z-statistics 

of this test are reported in column (4).  They suggest that the distributions of the monthly excess 

returns in each individual decade do not differ significantly from the distribution for the full 

period at customary levels of significance.  Hence, the distribution of excess returns does not 

seem to change significantly over time, which suggests that the risk-free percentiles are 

stationary.  A reasonable estimate of the mean risk-free percentile for one-month investment 

horizons is therefore the 46.4% figure obtained for the overall 1926–2005 period.  The exception 



23 

in our test is the 1966–1975 decade, which differs significantly from the overall distribution with 

confidence 0.95.  We should note, however, that observing a significant difference for one 

decade out of eight is not very surprising.       

Column (3) assumes normality.  The Shapiro-Wilk test in column (5), however, rejects 

that assumption for most decades.  To assess the importance of the deviation from normality with 

regard to the estimation of the risk-free percentiles, column (6) computes the risk-free percentiles 

on the basis of the actual distributions of excess returns (the so-called exact method).  These 

estimates are almost always smaller than those obtained under the normality assumption.  The 

deviation between the two, however, is relatively contained.  For the full period, for example, the 

exact risk-free percentile is 40.1%, compared with 46.4% under the normal.  Moreover, the 

average deviation is 5.35% across decades (not shown).       

The last column in the table illustrates the exact binomial 95%-confidence intervals for 

the exact risk-free percentiles in each decade.  The risk-free percentile of 40.1% measured for the 

full period is inside the binomial confidence intervals in each individual decade—the exception 

is 1966–1975.  This implies stationarity of the sample distributions of excess returns, consistent 

with the conclusions implied by the Wilcoxon rank-sum test.      

B.  Risk-free Percentiles for One-year Investment Horizons: Historical U.S. Estimates   

The preceding table looks at monthly risk-free percentiles.  In practice, however, we are 

interested in longer investment horizons.  Table IV therefore extends the hypothetical horizon to 

one year and estimates the associated risk-free percentiles.  The data are still those for the U.S.  

Panel A reports annualized figures.  Column (1) shows mean annualized excess returns; to 

annualize, we multiply the average monthly excess return stated in Table III for a particular 

decade times 12.  Column (2) computes the variance of the annualized excess return for each 
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decade by multiplying the corresponding variance of the monthly excess return in Table III times 

12.20  For the full period, for example, we find a mean annualized excess return of 5.9% and a 

variance of 3.6%.  Column (3) then uses each decade’s parameter estimates to compute risk-free 

percentiles under the normal.  These annualized percentiles are generally lower than the monthly 

percentiles reported in the preceding table.  The reason is that, in annualizing, the mean increases 

with 12 and the standard deviation increases with the square root of 12.  The estimated 

percentiles go from 16.0% (1946–1955) to 56.6% (1966–1975), although most of the 

observations are between 30% and 48%.  For the full 1926–2005 period, the estimate is 37.7%, 

which is not much different from the average of 35.3% we can compute across decades (not 

shown). 

[Table IV about here] 

For a comparison, Panel B of the table performs the calculations with historical annual 

(as opposed to annualized) excess return data.  That computation yields an overall risk-free 

percentile of 38.2% under the assumption of normality, a figure that is almost identical to the 

annualized 37.7% found in Panel A.  Observed annual excess returns are not Gaussian according 

to a Shapiro-Wilk test either, but the deviation is considerably less extreme than that observed 

with monthly data—the z-statistics are 9.801 with monthly and 2.071 with annual data.   

As with monthly data, the risk-free percentiles obtained under the normal are larger than 

the exact risk-free percentiles (38.2% vs. 32.5%, respectively).  If true, this difference would 

imply a bias in the conditional cash flow estimate equal to 15-16% of the standard deviation of 

                                                 
20 There are alternative ways of forecasting volatility.  One could use GARCH models on a rolling basis.  Figlewski 

(1997), however, shows that GARCH(1,1) volatility forecasts for the S&P 500 with monthly data are worse than 

forecasts based on historical estimates—and they are generally not better with daily data.  Hence, the use of 

historical volatility estimates for forecasting purposes is both simple and relatively precise. 
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the systematic part of the cash flow.21  We also find that the 38.2% estimate falls inside the exact 

binomial 95%-confidence interval shown in the panel.  Hence, we cannot reject the hypothesis of 

no difference between the estimated and the actual risk-free percentiles.     

Overall, the evidence suggests that we can assess risk-free percentiles for one-year 

investment horizons equally well by annualizing monthly data or by using annual data directly.  

Moreover, both estimates are reasonably close to the actual risk-free percentile observed for the 

full sample period.  With annual data, the normality assumption seems to be more acceptable 

than it is with monthly data.  Remember, however, that normality is not a necessary assumption, 

even though it can simplify the estimation of risk-free percentiles, especially over longer 

investment horizons.  We could therefore also use the exact risk-free percentiles as a proxy for 

the risk-free percentiles.  

[Table V about here] 

One potential problem in annualizing monthly excess returns is the implicit assumption 

of serial independence.  Table V reports autocorrelation coefficients of monthly excess returns 

for individual decades during the years of 1926–2005.  According to the calculations, no serial 

correlation coefficient is numerically large or significant at the first six lags in any individual 

decade.  The only significant coefficients are those computed for the overall period.  They are, 

however, numerically fairly minuscule.  Allowing for serially correlated monthly excess returns 

yields risk-free percentile estimates almost identical to those obtained in Table IV under the 

assumption of zero autocorrelation (not shown).             

                                                 
21 The percentile difference of 5.7% (=38.2%–32.5%) implies a difference in the systematic part of the cash flow of 

15.4% under a standard normal distribution. 
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C.  Risk-free Percentiles for Different Maturities: Historical U.S. Estimates 

Table VI displays risk-free percentiles for investment horizons up to ten years under the 

assumption of normality.  For our computations, we use the annualized excess-return average 

and variance estimates reported in Panel A of Table IV for the full sample period of 1926–2005 

(5.911% and 3.569%, respectively).  For an investment horizon of T years, the average excess 

return is T×5.911% and the variance T×3.569%.  For a four-year horizon, for example, the 

average excess return is 23.6% (=5.911%4) and the return variance 14.3% (=3.569%4).  These 

parameters imply a risk-free percentile of 26.6%.  The risk-free percentiles we obtain go from 

37.7% for a one-year horizon down to 16.1% for a ten-year horizon.   

[Table VI about here] 

D.  Risk-free Percentiles across International Capital Markets 

The last step in our analysis performs an international comparison.  The countries of 

interest are Australia, Canada, France, Germany, Hong Kong, Japan, Spain, Switzerland, and the 

U.K.  With the U.S., these are the largest stock markets in 2006 according to the World 

Federation of Exchanges.  Table VII computes risk-free percentiles for one-year investment 

horizons under four different approaches.   

[Table VII about here] 

Column (1) estimates risk-free percentiles in each country using annualized monthly 

excess returns under the assumption of normality.  Column (2) reports risk-free percentiles 

obtained from the estimated means and variances of the historical annual excess returns under 

the assumption of normality.  Column (3) exhibits exact risk-free percentiles based on the 
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historical distributions of annual excess returns.  The last column presents the exact binomial 

95%-confidence intervals for the risk-free percentiles.   

If capital markets were reasonably integrated, their risk-free percentiles ought to be 

similar.  The evidence supports that conjecture.  Regardless whether we estimate them by 

annualizing monthly returns or using historical annual returns under the assumption of normality, 

the estimates are reasonably similar.  For the most part, these estimates are also fairly close to the 

exact risk-free percentiles—at the very least, the exact binomial test fails to reject equality.  As a 

result, the cross-country average risk-free percentiles are almost the same no matter how we 

estimate them—38.2% when we annualize monthly excess returns, 39.3 when we use historical 

annual returns under the normal, and 36.5% when we simply compute the exact percentiles.   

V.  Conclusions 

Black’s (1988) rule gets around a number of estimation problems that face the analyst 

trying to implement traditional DCF valuation approaches.  Among other things, he does not 

have to identify the market portfolio, measure the project’s risk or its changes, and assess the 

market risk premium.  As it turns out, that estimation is almost hopeless under the best of 

conditions—so much so, according to Fama and French (1997), that "two of the ubiquitous tools 

in capital budgeting are a wing and a prayer" (p. 179).   

The rule can be used under all circumstances in which one can use the standard valuation 

approaches, including the CAPM and the APT.  Moreover, it can be used in situations under 

which the CAPM and the APT do not apply.  The rule looks fairly simple, but it requires 

knowledge of a project’s conditional mean NCFs (conditional on zero excess returns).  

Estimating those conditional NCFs is not straightforward, which has probably dissuaded 
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textbooks from recommending the rule and discouraged practitioners from adopting it.  This 

paper discusses a simple way to estimate a project’s conditional mean NCFs. 

The resulting approach to implement Black’s rule involves four steps: (i) Finding a 

benchmark security that correlates with the project’s NCFs and yields an error term that captures 

pure idiosyncratic risk; (ii) estimating the percentiles of the distribution for which the stock 

return in question equals the risk-free rate over different investment horizons; (iii) obtaining 

information from managers to assess the cash flows that define the same percentile in the 

corresponding cash flow distributions (the conditional mean cash flows required by Black’s 

rule); and (iv) discounting the conditional mean cash flows at the yields-to-maturity on riskless 

pure discount bonds with the same maturity as the cash flows.  Much of these steps can be 

programmed fairly easily in a spreadsheet.  Since value is additive, we can also decompose a 

cash flow into component cash flows and value the components separately using, if appropriate, 

different benchmark securities.      

To assess the existence of the required benchmark security, we estimate regressions of 

the operating NCFs of COMPUSTAT firms against the contemporaneous return on the S&P 500.  

Even at that high level of aggregation, we can find a fairly strong correlation for a number of 

firms.  Hence, there are reasons to believe that Black’s rule is implementable for a large number 

of companies.    

As for the risk-free percentiles, one can estimate them from past excess returns on the 

benchmark security.  The easiest way is to use annual data and to assume normality.  Given these 

percentiles, one has to find ways to elicit information concerning the distribution of future 

project NCFs from managers.  Under two-parameter distributions such as the normal, all one 
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needs is two statistics (e.g., mean and variance) of that distribution.  A survey of managers 

suggests that a majority would be able to provide that information.   

The hurdles that our implementation of Black’s rule has to clear are mainly two.  We 

have to find a benchmark security with the appropriate characteristics, and managers have to be 

able to ignore idiosyncratic risk in their cash flow projections.  Even though traditional valuation 

approaches are also confronted with these two problems, our procedure is not always better, 

easier, or more precise than traditional valuation methods.  Our approach, however, is a feasible 

and theoretically sound alternative to those methods.  It is therefore a helpful addition to the tool 

box of valuation.   
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Table I 

Correlation between net cash flows and contemporaneous returns on the S&P 500 
 

The table shows R-squared of OLS regressions of the innovation in a company’s quarterly net cash flows on 

benchmark returns according to equation (3) in the text:  

 

  4 1 , 2 ,     t t Q t f t f t tNCF NCF R R R    .  

 

For one-year investment horizons, the innovation in net cash flows is the difference between the net cash flow in 

quarter t and the net cash flow in the same quarter of the prior year.  Rt is the benchmark return and Rf,t is the risk-

free rate.  Returns are one-, two-, and three-year returns, respectively.  For two- and three-year investment horizons, 

the innovation in NCF is the difference between the NCF in quarter t and the NCF in the same quarter two (NCFt-

8Q), respectively three (NCFt-12Q) years before.  We use the S&P 500 as our benchmark index.  The risk-free rate is 

the return on the constant-maturity Treasury series obtained from the CRSP Government Bond Files.  The sample 

comprises all Compustat firms, excluding financials.  We measure NCFs with quarterly net cash flows from 

operations as reported in Compustat data item #108.  Alternatively, we scale these net cash flows with total assets 

(TA, Compustat data item #44).  The data are collected on a quarterly basis.  We use 5- and 10-year sample periods 

for our regressions.  The 5-year window includes the years 2001 to 2006; the 10-year period covers the years 1997 

to 2006.  Firms are excluded from the 5- or the 10-year sample periods if they have less than 20 and 30 observations, 

respectively.  Q1 and Q3 in the tables are the first and third quartile of the sample distribution; P90 is the 90th 

percentile. 

 

Returns NCF 

definition 

R-squared of regressions 

Average Q1 Q3 P90 Max Obs. 

5-year window (2001–2006)      

1-year return NCF 0.222 0.096 0.322 0.437 0.805 3,206 

 NCF/TA 0.227 0.094 0.340 0.453 0.807 3,191 

2-year return NCF 0.282 0.113 0.423 0.576 0.834 3,101 

 NCF/TA 0.291 0.121 0.437 0.588 0.843 3,092 

3-year return NCF 0.293 0.121 0.439 0.601 0.890 2,785 

 NCF/TA 0.291 0.120 0.435 0.598 0.900 2,779 

10-year window (1997–2006)      

1-year return NCF 0.098 0.027 0.139 0.224 0.643 3,936 

 NCF/TA 0.101 0.029 0.143 0.234 0.668 3,915 

2-year return NCF 0.199 0.072 0.293 0.426 0.800 3,755 

 NCF/TA 0.189 0.064 0.279 0.414 0.775 3,735 

3-year return NCF 0.266 0.112 0.393 0.536 0.836 3,461 

 NCF/TA 0.245 0.098 0.363 0.509 0.846 3,443 
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Table II 

Survey results 
 

We surveyed the alumni of the Rochester-Bern Executive MBA to find out whether they would have the information 

necessary for our implementation of Black’s discounting rule.  We asked those who have been involved in 

computations of (medium/large) project or firm value with a discounted cash flow (DCF) approach whether they 

would have been able to quantify the items listed below.  The table reports numbers and percentages of respondents 

for each individual item.  We sent the questionnaire to 496 managers in January of 2007.  212 (42.7%) filled out the 

questionnaire and returned it by mid March 2007.  Of the respondents, 125 (59%) were recently involved in 

valuation (the overwhelming majority with a DCF approach).  Our implementation of Black’s discounting rule 

requires at least two points on the hypothetical distribution of project cash flows.  Consequently, it calls for any two 

of the following items: A-I, A-II, B-I & II, C-I & II, D-I & II, and E.   

 

Ability to provide the following items of the cash flow distribution   Number of 

respondents 

Percentage of 

respondents 

A-I The average cash flow 107 85.6% 

A-II The standard deviation of the cash flow 23 18.4% 

B-I A break-even cash flow (i.e., the minimal cash flow necessary to make 

the project worthwhile) 90 72.0% 

B-II A rough probability of observing the break-even cash flow 44 35.2% 

C-I The pessimistic cash flow 94 75.2% 

C-II A rough probability of observing the pessimistic cash flow 44 35.2% 

D-I The optimistic cash flow 94 75.2% 

D-II A rough probability of observing the optimistic cash flow 44 35.2% 

E A rough probability of observing a zero cash flow 28 22.4% 

F Rather than for the aggregate cash flow, would it have been easier to 

provide information about A-I to C-II for its individual ―line-item‖ 

components (i.e., revenues, variable costs, investments, etc.)? 

68 54.4% 

Ability to provide any two of A-I, A-II, B-I & II, C-I & II, D-I & II, and E 63 50.4% 
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Table III 

Monthly risk-free percentiles in the U.S. 
 

The table estimates risk-free percentiles on the basis of continuously compounded monthly return data from the U.S. 

for individual decades in 1926–2005.  The CRSP Value Weighted Index is the benchmark security and the yields on 

30-day T-bills are the proxies for the risk-free interest rate.  The individual columns report: (1) The mean monthly 

excess return, defined as the difference between the benchmark return and the contemporaneous risk-free rate;  (2) 

The variance of the monthly excess return;  (3) The fraction of monthly excess returns less than or equal to zero (i.e., 

the risk-free percentile) in a given decade under the normal approximation.  In this computation, the normal 

distribution has parameter values equal to the mean and the variance of the excess return reported for the decade in 

question;  (4) The z-statistic of a Wilcoxon rank-sum (Mann-Whitney) test of the hypothesis that the sub-period 

samples come from the same distribution as the overall 1926–2005 sample (excluding the sub-period in question);  

(5) The z-statistic of a Shapiro-Wilk test of normality;  (6) The exact risk-free percentile, defined as the proportion 

of observed monthly excess returns smaller than or equal to zero in any given decade;  (7) The binomial exact 95%-

confidence intervals for that percentile; (8) The number of monthly returns in each decade.  
*
, 

**
, and 

***
 denote 

significance at the 10%, 5%, and 1% level, respectively (two-sided tests). 

 

Period Mean 

excess 

return 

Excess 

return 

variance 

Risk-free 

percentile, 

assuming 

normality 

Wilcoxon 

rank-sum 

test (z-

statistics) 

Shapiro-

Wilk tests 

for normality 

(z-statistics) 

Exact risk-

free 

percentile 

Exact binomial 

95%-confidence 

intervals 

Number 

of 

observa-

tions 

 (1) (2) (3) (4) (5) (6) (7) (8) 

1926–1935 0.172% 0.912% 49.3% –0.021 4.002
***

 42.5% [33.5%, 51.8%] 120 

1936–1945 0.702% 0.390% 45.5% –1.001 5.006
***

 35.8% [27.3%, 45.1%] 120 

1946–1955 1.065% 0.137% 38.7% –1.242 1.425
*
 37.5% [28.8%, 46.8%] 120 

1956–1965 0.669% 0.116% 42.2% –0.137 3.123
***

 34.2% [25.8%, 43.4%] 120 

1966–1975 –0.230% 0.229% 51.9% 2.210
**

 0.709 50.8%
**

 [41.6%, 60.1%] 120 

1976–1985 0.477% 0.188% 45.6% 0.707 0.930 45.8% [36.7%, 55.2%] 120 

1986–1995 0.636% 0.193% 44.2% –0.292 5.645
***

 35.0% [26.5%, 44.2%] 120 

1996–2005 0.450% 0.222% 46.2% –0.223 3.360
***

 39.2% [30.4%, 48.5%] 120 

1926–2005 0.493% 0.297% 46.4% N/A 9.801
***

 40.1% [37.0%, 43.3%] 960 
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Table IV 

Risk-free percentiles for one-year investment horizons in the U.S. 
 

The table estimates risk-free percentiles for one-year investment horizons with continuously compounded monthly 

return data from the U.S. for the individual decades of 1926–2005.  The CRSP Value Weighted Index is the 

benchmark security and the yields on 30-day T-bills are the proxies for the risk-free interest rate.  Panel A reports 

annualized figures.  Column (1) shows the mean annualized excess return, defined as the difference between the 

return on the CRSP Value Weighted Index and the contemporaneous risk-free rate; to annualize, we multiply the 

average monthly excess return, as reported in Table 2 for the decade in question, times 12.  Column (2) computes 

the variance of the annualized excess return by multiplying the variance of the monthly excess return reported in 

Table III for the decade in question times 12.  Column (3) reports the implied fraction of annualized excess returns 

less than or equal to zero (the risk-free percentile) in a given decade.  Panel B gives descriptive statistics concerning 

actual annual excess returns.  
**

 denotes significance at the 5% level (two-sided tests).   

 

Panel A:  Annualized risk-free percentiles for individual decades in 1926–2005 

Period Mean annualized excess 

return 

Annualized excess return 

variance 

Risk-free percentiles, 

assuming normality 

(1) (2) (3) 

1926–1935 2.066% 10.948% 47.5% 

1936–1945 8.422% 4.682% 34.9% 

1946–1955 12.774% 1.644% 16.0% 

1956–1965 8.024% 1.386% 24.8% 

1966–1975 –2.760% 2.744% 56.6% 

1976–1985 5.728% 2.250% 35.1% 

1986–1995 7.626% 2.313% 30.8% 

1996–2005 5.405% 2.667% 37.0% 

1926–2005 5.911% 3.569% 37.7% 

 

 

Panel B:  Annual risk-free percentiles for individual decades in 1926–2005 

Average annual excess return 5.911% 

Variance of annual excess return 3.900% 

Implied risk-free percentile (fraction of excess returns  0) 38.2% 

Shapiro-Wilk tests for normality, z-statistic 2.071
**

 

Exact risk-free percentile (proportion of monthly excess returns  0) 32.5% 

Exact binomial 95%-confidence interval [22.4%, 43.9%] 
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Table V 

Autocorrelation coefficients of monthly excess returns in the U.S. 
 

The table reports autocorrelation coefficients of monthly excess returns for individual decades during the 1926–2005 

period.  The computations rely on continuously compounded monthly return data from U.S. for the years 1926–

2005.  The CRSP Value Weighted Index is the benchmark security and the yields on 30-day T-bills are the proxies 

for the risk-free interest rate.  The null hypothesis for the Portmanteau test is that the data are white noise.  
***

 

denotes significance at the 1% level.  

 

Period Autocorrelation Portmanteau test for white 

noise (12 lags) 

Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Portmanteau 

(Q) statistic 

p-value 

1926–1935 0.223 –0.073 –0.239 –0.002 0.085 –0.007 26.863 0.008 

1936–1945 –0.111 0.170 –0.071 0.063 0.090 0.040 13.801 0.314 

1946–1955 0.016 0.045 –0.051 –0.036 0.118 –0.001 5.716 0.930 

1956–1965 0.140 –0.075 0.044 0.179 –0.004 –0.122 19.341 0.081 

1966–1975 0.113 –0.001 0.071 0.067 0.056 –0.058 7.705 0.808 

1976–1985 0.031 –0.085 –0.081 0.041 0.231 –0.023 11.392 0.496 

1986–1995 0.055 –0.063 –0.097 –0.185 0.039 –0.022 12.340 0.419 

1996–2005 0.039 –0.066 0.014 –0.080 0.004 0.109 6.148 0.908 

1926–2005 0.100
***

 –0.012
***

 –0.099
***

 0.009
***

 0.083
***

 –0.003
***

 32.725 0.001 
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Table VI 

Risk-free percentiles for different investment horizons in the U.S. 
 

The table reports risk-free percentiles for different cash-flow maturities (investment horizons) of a hypothetical 

project.  The computations rely on continuously compounded monthly return data from U.S. for the years 1926–

2005.  The CRSP Value Weighted Index is the benchmark security and the yields on 30-day T-bills are the proxies 

for the risk-free interest rate.  The various columns show: (1) The investment horizon, i.e., the maturity of the cash 

flows of the hypothetical investment project; (2) The estimated mean cumulative excess returns for the different 

investment horizons (= 5.911% × investment horizon; 5.911% is the mean annualized excess returns from Panel A 

of Table IV); (3) The variance of the excess returns (= 3.569% × investment horizon; 3.569% is variance of the 

annualized excess returns from Panel A of Table IV); (4) The risk-free percentiles assuming normality.   

 

Investment horizon in 

years 

Estimated mean cumulative 

excess return   

Estimated excess return 

variance  

Risk-free percentiles, 

assuming normality 

(1) (2) (3) (4) 

1 5.911% 3.569% 37.7% 

2 11.822% 7.138% 32.9% 

3 17.733% 10.707% 29.4% 

4 23.644% 14.276% 26.6% 

5 29.555% 17.845% 24.2% 

10 59.110% 35.690% 16.1% 
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Table VII 

Risk-free percentiles for one-year investment horizons; an international perspective 
 

This table computes risk-free percentiles for one-year investment horizons based on annualized and annual excess 

returns for one-year investment horizons across countries.  To compute mean annualized excess returns, we multiply 

the average monthly excess return observed for each country’s sample period times 12.  The variance of the 

annualized excess return is calculated as the variance of the monthly excess return for each country’s sample period 

times 12.  Risk-free percentiles are then computed under the assumption of normality (column 1).  Column (2) 

calculates risk-free percentiles under the assumption of normality using the mean and variance of the (historical) 

annual excess returns in each country.  Column (3) exhibits exact risk-free percentiles based on the (historical) 

annual excess returns in each country.  Column (4) shows exact binomial 95%-confidence intervals for the risk-free 

percentiles in each country.     

 

Countries Period Annualized excess 

returns 

Annual excess returns 

Implied risk-free 

percentiles 

Risk-free 

percentiles under 

the normal 

Exact risk-free 

percentiles 

Exact binomial 

95%-confidence 

intervals 

(1) (2) (3) (4) 

Australia 1926–2005 33.9% 35.7% 28.8% [19.2%, 40.0%] 

Canada 1934–2005 36.5% 36.9% 36.1% [25.1%, 48.3%] 

France 1926–2005 37.5% 40.0% 43.8% [32.7%, 55.3%] 

Germany 1926–2005 44.2% 40.2% 37.5% [26.9%, 49.0%] 

Hong Kong 1970–2005 37.3% 38.9% 33.3% [18.6%, 51.0%] 

Japan 1926–2005 35.8% 37.5% 41.3% [30.4%, 52.8%] 

Spain 1941–2005 37.6% 40.0% 35.4% [23.9%, 48.2%] 

Switzerland 1966–2005 39.1% 41.8% 32.5% [18.6%, 49.1%] 

U.K. 1926–2005 38.3% 40.4% 36.3% [25.8%, 47.8%] 

U.S. 1926–2005 37.7% 38.2% 32.5% [22.4%, 43.9%] 

Average – 38.22% 39.32% 36.52% – 
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Figure 1 

Benchmark returns and associated conditional mean NCFs 
 

The diagrams use the continuously compounded return on CRSP’s Value Weighted Index as the benchmark return.  

That return is assumed to be normally distributed with parameter values equal to those observed during 1926–2005, 

namely an annual average of 9.54% and a standard deviation of 19.51%.  The continuously compounded risk-free 

rate is 3.63%.  The investment project is assumed to have a NCF with an  -value of 100 and a cash flow beta of 

800. 
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Appendix A 

Comprehensive Example 

 

A producer of plastic products is thinking of replacing one of its extrusion machines.  The 

new machine costs 1.2 million.  It requires less energy, and it is faster and more reliable than the 

current one.  Upkeep and maintenance costs are about the same as for the old machine.  The 

relevant horizon is five years.  How could one use Black’s rule to help the producer decide?  

Suppose we use the CRSP Value Weighted Index as the benchmark security and the 

historical annual yields-to-maturity on Treasury securities with maturities between 1 and 5 years 

as measures of the risk-free rate.  Unless otherwise indicated, all data are historical.  On the basis 

of these assumptions, we know from the preceding discussion that the relevant risk-free 

percentiles are as follows. 

Year of 

NCF 

Cumulative average 

RM 

Standard deviation of 

RM 

Cumulative risk-free 

rate 

Risk-free percentile 

1 11.39% 15.58% 5.13% 34.39% 

2 22.78% 22.03% 10.48% 28.83% 

3 34.17% 26.99% 15.96% 24.99% 

4 45.56% 31.16% 21.56% 22.06% 

5 56.95% 34.84% 27.35% 19.78% 

 

To assess the distribution of future NCFs, let’s assume the project manager has given us 

the following data (all NCFs in thousands).   

 

Year of 

NCF 

Average NCF 

State of market: 

Pessimistic 

Probability of lower 

NCF 

Average NCF 

State of market: 

Normal 

Probability of lower 

NCF 

1 200 10% 500 50% 

2 300 10% 700 50% 

3 300 10% 700 50% 

4 200 10% 500 50% 

5 100 10% 200 50% 

 

The manager is able to state the unconditional average future NCFs.  Hence, we only 

need to estimate the standard deviation of the future NCFs to identify their distributions.  Once 

we have those estimates, we can calculate the conditional mean NCFs we are searching for.  The 
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following table summarizes the resulting calculations (NCFs in thousands).  Note that the risk-

free rates are the current as opposed to the historical ones.   

Year of 

NCF 

Estimated mean of 

future NCF 

distribution 

Estimated standard 

deviation of future 

NCF distribution 

Risk-free 

percentile 

Estimated 

conditional mean 

NCF 

Current risk-

free rate 

(continuously 

compounded) 

1 500 234.09 34.39% 405.93 5.25% 

2 700 312.12 28.83% 525.73 5.30% 

3 700 312.12 24.99% 489.38 5.45% 

4 500 234.09 22.06% 319.71 5.50% 

5 200 78.03 19.78% 133.71 5.60% 

 

For example, to estimate the standard deviation of the future NCF in year 4, we write: 

200 200 500
0.1,

    
     

    
 which implies 

200 500
1.282


 


 and 234.09.   

Similarly, to assess the conditional mean NCF in year 4, we write: 

C CNCF NCF 500
0.2206.

234.09

    
     

   
   

Upon inverting this expression, we obtain: 

CNCF 500
0.77017

234.09


   and therefore CNCF 0.77017 234.09 500 319.71.      

The information in the table can be used to compute project value.  All we have to do is discount 

the conditional mean NCFs with the appropriate current risk-free rates.   

0.0525 0.053 2 0.0545 3 0.055 4

0.056 5

NPV 1,200 405.93 e 525.73 e 489.38 e 319.71 e

133.71 e 431.22.

      

 

          

  
 

The value of the project is 431.22 thousand.  Based on this point estimate, buying the machine 

appears to be financially attractive. 


